

Energy Efficiency Analysis for a Multi-Story Commercial Office Building

(LG Multi V™ III Heat Recovery VRF System)

Contents

Executive Summary	
Introduction	
Modeling Approach	
Overview	
Component Comparison	
Mechanical Systems	
Results	10
Overview	10
Miami Results	12
Phoenix Results	14
Atlanta Results	16
New York Results	18
Chicago Results	20
LEED for New Construction & Major Renovations	22
References	24

Executive Summary

LG Electronics U.S.A. Commercial Air-Conditioning (LG CAC) conducted an energy efficiency option analysis for a proposed office building design. To provide a concrete basis for analysis, the building would be built in Department of Energy (DOE) climate zones, 1A, 2B, 3A, 4A, and 5A. This study explores the energy and resulting cost savings of operating a LG Multi V™ III Heat Recovery Variable Refrigerant Flow (VRF) System as compared with operating various types of commercially typical HVAC systems described in the Leadership in Energy and Environmental Design (LEED® for New Construction & Major Renovations™) baseline building. LG CAC created several computer simulations of the proposed and baseline designs, all of which used the same floor plans, occupancy schedules, lighting power density, ventilation, and envelopes types. Only the mechanical system types and associated efficiencies differed for each simulation.

The simulations demonstrated that the proposed designs using LG Multi V III Heat Recovery VRF systems provided significant annual utility bill savings when compared to all LEED baseline building systems.

Table 1 Summary of LG Multi V III Heat Recovery

HVAC Energy Cost Savings and % Savings

Location	Multi V III Heat Recovery			
(Climate zone)	Savings*	Savings (%) *		
Miami, FL(1A)	\$57,333	40%		
Phoenix, AZ (2B)	\$34,321	28%		
Atlanta, GA (3A)	\$43,499	35%		
New York, NY(4A)	\$82,070	20%		
Chicago, IL (5A)	\$55,300	36%		

[*Compared to the LEED® baseline System- 8: variable air volume (VAV) with elec. Reheat.]

Note: Legal Disclaimer: The models described in this report are intended to demonstrate the potential cost-effectiveness of possible energy improvements for the new facilities. The choice of models was subject to LG Electronics CAC's professional judgment in accordance with industry standards. The conclusions of this report do not guarantee actual energy costs or savings.

Introduction

Overview

This engineering case study explores the implementation of a LG Multi V III Heat Recovery VRF system in a typical new construction multi-story commercial office building. Specifically, it compares the energy saving when compared to a baseline building as the United States Green Building Council (USGBC®'s) LEED¹. The study was conducted using a building model with the same physical properties, and based on the exact same plans in five different climates—Miami, FL (1A), Phoenix, AZ (2B), Atlanta, GA (3A), New York, NY (4A), and Chicago, IL (5A). (See Figure 1)

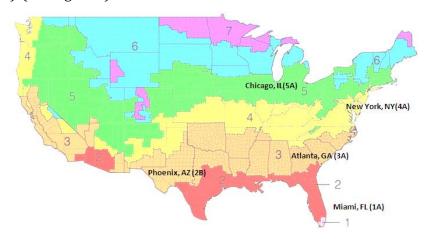


Figure 1: DOE climate zones (ASHRAE® Standard 90.1-2007)

¹ United Green Building Council (USGBC[®]) LEED[®] Green Building Design and Construction 2009 Edition Design Manual.

The building consists of six stories with a total area of conditioned space at 133,595 ft². The types of conditioned space included varying sizes and miscellaneous spaces such as the office, lobbies, conference, break, and fitness rooms, as well as some mechanical/electrical rooms. (See Table 2) Outside air is introduced to the inlet of the heat recovery ventilators serving spaces of the building.

The buildings envelopes consisted of a mass wall with friction-fit insulation and roof with insulation entirely above a deck. The common spaces and offices were expected to operate from Monday through Friday (8am-7pm, 75 hours per week).

Table 2 Office Space Types and Sizes

Size (ft²)
102,761
20,109
2,464
2,056
1,869
1,388
1,272
920
756
133,595

Modeling Approach

Overview

EnergyPro version 5.1, computer-based building energy simulation software developed by EnergySoft® (www.energysoft.com), was used to model the building for this analysis. EnergyPro software contains the following accreditations:

- Employs the DOE-2.1E simulation engine
- Approved by California Energy Commission for use with California Title 24 code
- Approved by Internal Revenue Service (IRS) for use with Residential and Nonresidential Tax Credits
- Accepted by California Utilities for Savings by Design Incentive Program
- Accepted by USGBC to apply for LEED certification

To determine savings, the energy consumption was calculated using LEED baseline building requirements.

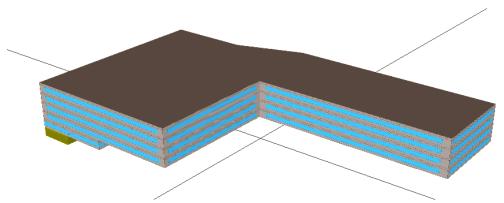


Figure 2: Sketch of Building Energy Model.²

² Rendering by eQUEST

Baseline Building

The LEED design guide uses building material specifications defined by the ASHRAE Standard 90.1-2007 for the envelope such as U-values for walls, roofs, floors, and windows.

Three different baseline systems were developed consisting of multiple heating, ventilating, and air-conditioning (HVAC) systems each. The conditioned areas were served by ASHRAE Standard 90.1-2007 System 8, variable air volume (VAV), and chilled water with parallel fan powered (PFP) Boxes which were composed of a central, variable-volume fan that supplied conditioned air to each room. In addition, ASHRAE Standard System 3, packaged rooftop air conditioner (PSZ-AC) and ASHRAE Standard 90.1-2007 minimum efficient water-source heat pump (WSHP) were also considered as baseline HVAC systems.

The office building is assumed to be fully heated and cooled. Setup and setback schedules are implemented during unoccupied hours (nighttime), when the HVAC system is set to cycle to maintain temperature requirements for setup and setback and maintain humidity requirements. Although humidity may not typically be controlled during unoccupied periods, avoiding mold and moisture is good practice. (See Table 4 for details about the specification of the baseline and proposed HVAC systems, respectively.)

Proposed Building

The proposed building models used Multi V III Heat Recovery VRF commercial air-conditioning systems, which are designed for large-scale facilities, such as commercial office buildings, hotels, hospitals, and schools (See Figure 3)

Multi V III Heat Recovery system features superior energy efficiency and longer piping capabilities and is ARHI 1230 certified. Boosted by LG's high-side shell compressor, the system provided an increased inverter range for a better response to load matching. Multi V III Heat Recovery system could reduce operational costs while providing reliable heat in colder regions. Multi V III Heat Recovery system's advanced rapid start feature enables the compressors to come on faster to meet startup load. Multi V III Heat Recovery system's compact space-saving design and industry leading piping capabilities provided the ultimate in design flexibility.

Figure 3: Multi V III Heat Recovery, Heat Recovery Unit, and a Ducted Indoor Unit.

The specifics of the design choices are discussed in the following section.

Component Comparison

Several components were considered and analyzed in the building model:

- Modeled sizes and efficiencies (code minimum efficiencies)
- Baseline building envelope
- Lighting system
- Mechanical system
- Domestic hot-water system

Building Envelope

The model's building envelope characteristics followed the baseline values stipulated by LEED, which adheres to ASHRAE Standard 90.1-2007:

Table 3: Building Envelope Characteristics

Components			Loca	itions (Climate	Zones)	
		Miami, FL (1A)	Phoenix, AZ (2B)	Atlanta, GA (3A)	New York, NY (4A)	Chicago, IL (5A)
Windows: (32.78 % of	Assembly U-factor	U-1.20	U-0.55	U-0.6	U-0.50	0.45
Wall Area)	SHGC	0.25	0.25	0.25	0.40	0.40
Skylights		None	None	None	None	None
Exterior Walls	Above Grade	U-0.124	U-0.124	U-0.084	U-0.064	0.064
(Mass wall building)	Below Grade	U-0.084	U-0.084	U-0.084	U-0.084	0.084
Roofs (Entirely Ins		U-0.063	U-0.048	U-0.048	U-0.048	0.048
Floors	5	U-0.253	U-0.052	U-0.052	U-0.038	0.038
Opaque doors		U-0.700	U-0.700	U-0.700	U-0.700	0.700
Standards		• AS	ED for New Co SHRAE 62.1-200 SHRAE 90.1-200	04	∕lajor Renovatio	ns

Mechanical Systems

HVAC System

A VAV system (ASHRAE std. 90.1 Sys-8 VAV with elec. Reheat) is the baseline defined by ASHRAE std. 90.1 2007 for this building size and type. This system is used in the building types of nonresidential and more than five floors or more than 150,000 ft². A RTU-Gas Furnace (ASHRAE Standard 90.1 Sys-3) is a typical HVAC package used in many building types. ASHRAE Standard 90.1-2007 minimum efficient WSHP systems have recently become a popular choice to replace outdated HVAC systems. Baseline and proposed HVAC systems were as follows:

Table 4: Air-Handling Mechanical System Characteristics

		VAV with elec. Reheat	RTU-Gas Furnace	WSHP	
Systems		ASHRAE Type8	ASHRAE Type 3	ASHRAE minimum efficiency	Multi-V III Heat Recovery
	Cooling Tower	2x(250~300 tons), Two- Speed-Fan	-	2x(250~300 tons), Two- Speed-Fan	-
Cooling	Chiller	2x(250~300 tons), 0.718 kW/ton	-	-	-
	DX-Cooling	-	EER 11.0	EER 12.0	EER 11.0~14.0
	HW-Boiler (Natural Gas)	-	-	η = 80%	-
Heating	Electricity	Electric resistance	-	-	-
	Gas-fired furnace (Natural Gas)	-	η = 80%	-	-
	Heat pump	-	-	COP: 4.2	COP: 4~5
Air Systems		11×Built-Up VAVs	11×Packaged VVTs	11×Built-Up VAVs /WSHP (16~30 RT)	11×LG Multi V III Heat Recovery (16~30 RT) + Concealed Ducted Indoor units

Domestic Hot Water

Baseline and proposed domestic hot-water systems were as follows:

Table 5: Domestic Hot-Water Characteristics

Baseline	Proposed	Notes
Gas-fired storage water heater (50.0 gallons , 40,000 Btu/hr , 0.575 Energy Factor	Same	ASHRAE 90.1-2007 Table 7.8: Performance Requirements for Water Heating Equipment

Interior Lighting

Baseline and proposed interior lighting were as follows:

Table 6: Interior-Lighting Energy Characteristics

	Baseline	Proposed	Notes
Interior Lighting	Lighting Power Density (Average: 0.918 w/ft²)	Same	ASHRAE 90.1-2007 (Table 9.5.1: Lighting Power Densities Using the Building Area Method)
Exterior Lighting (Tradable)	1,680 watts	Same	ASHRAE 90.1-2007 (Table 9.4.5 Lighting Power Densities for Building Exteriors)

Receptacle Load

Baseline and proposed Receptacle equipment were as follows:

Table 7: Interior-Lighting Energy Characteristics

	Baseline	Proposed	Notes
Receptacle load	1.509 w/ft²	Same	ASHRAE 90.1-2007 (TABLE G3.1 Modeling Requirements for Calculating Proposed and Baseline Building Performance)

Average Utility Rates Source

The study used the following sources for electrical and natural gas rates³:

Energy Source	Miami, FL (1A)	Phoenix, AZ (2B)	Atlanta, GA (3A)	New York, NY (4A)	Chicago, IL (5A)
Electricity (\$/kWh)	0.109	0.085	0.089	0.155	0.091
Natural Gas(\$/therm)	1.224	1.206	1.122	1.212	1.160

³ Source: Data adapted from DOE-EIA and local utility companies

Results

Overview

According to the Commercial Building Energy Consumption Survey (CBECS), office buildings in the United States comprise roughly consume an average of 93 kBtu per square foot of site energy each year. Office buildings represent nearly one-fifth of all delivered energy consumed by commercial buildings, and are, therefore, an important focus for energy efficiency improvements (EIA 2005).⁴ Our goal is to investigate the feasibility of reducing energy use in newly constructed large office buildings across the United States relative to one built to comply with the minimum requirements of ASHRAE Standard 90.1-2007.

Multi V III Heat Recovery

The Multi V III Heat Recovery VRF systems used an average of 54 kBtu per square foot of site energy each year. The savings varied based on the location and the utility rates, but the Multi V III Heat Recovery VRF systems averaged about 21% of cost savings. (See Figure 4 and Figure 5)

The whole building energy cost savings realized with the Multi V III Heat Recovery VRF systems was 33% when compared to RTU system-3 and 47% average savings when comparing HVAC energy cost. The whole building energy cost savings realized with the Multi V III Heat Recovery system was 21% when compared to VAV system-8 and a 32% average savings when comparing HVAC energy cost.

The whole building energy cost savings realized with the Multi V III Heat Recovery system was 7% on average compared to an ASHRAE standard 90.1-2007 WSHP system. When comparing the energy cost used by the HVAC systems alone, Multi V III- Heat Recovery system was 12% less on average.

Based on the average energy cost savings from the models, future projects would meet the LEED EA credit 1 prerequisite and qualify for about up to six LEED points. The savings are detailed in the graphs (See Figure 6~Figure 15) and are further detailed in tables in the Annual Building Energy Consumption Comparisons and Annual Energy Consumption by End Use Summaries (See Table 8 ~Table 17).

-

⁴ NREL, Technical Support Document: Strategies for 50% Energy Savings in Large Office Buildings, 2010.

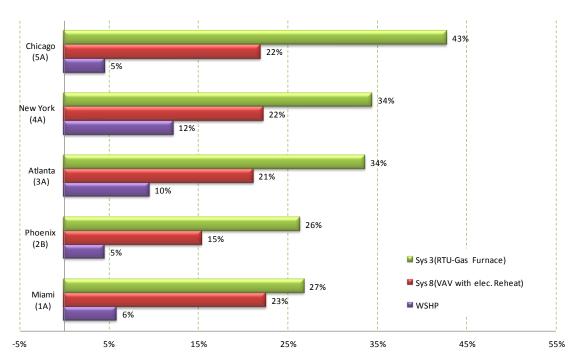


Figure 4: LG Multi-V III VRF Systems Whole Building Energy Cost (%) Savings.

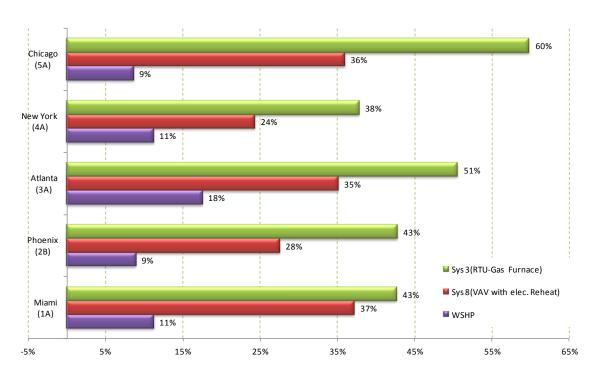


Figure 5 : LG Multi-V III VRF Systems HVAC Energy Cost (%) Savings.

Miami Results

Energy consumption by end use for the Miami location (climate zone 1A) was as follows:

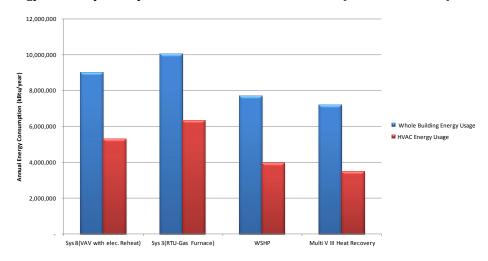


Figure 6: Miami Annual Energy Consumption Comparisons.

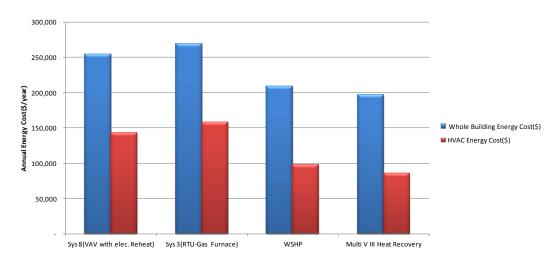


Figure 7: Miami Annual Building Energy Cost Comparisons.

The following tables summarize the energy usage and cost savings for the different cases. The whole building energy cost savings over the baseline (Sys 8, VAV with elec. Reheat) for the Multi V III Heat Recovery VRF systems was 23%.

Table 8: Miami Annual Energy Consumption by End Use

		Baseline(Proposed		
		Sys 8 (VAV with elec. Reheat)	Sys 3 (RTU-Gas Furnace)	WSHP	Multi-V III Heat Recovery
Area Lights	kWh	350,047	350,047	350,047	350,047
Equipment	kWh	663,385	663,385	663,385	663,385
Hot Water	therms	2,638	2,638	2,638	2,638
Space Cooling	kWh	649,805	551,284	308,047	328,272
Space	kWh	58,558	-	6,060	6,446
Heating	therms	•	4,383	1,608	-
Fans	kWh	814,821	1,169,667	771,227	679,088
Pumps	kWh	20,060	-	25,883	248
Totals	kBtu	8,987,541	10,032,202	7,674,203	7,181,869

Table 9: Miami Estimated Annual Energy Use and Cost

	ASHRAE Standard 90.1-2007			Proposed	
		Sys 8 (VAV	Sys 3 (RTU-		Multi-V III
			Gas	WSHP	Heat Recovery
		Reheat)	Furnace)		neat Necovery
Whole Building	Electricity(kWh)	2,556,676	2,734,383	2,124,649	2,027,486
Energy	Gas(therms)	2,638	7,021	4,246	2,638
Consumption	Total(kBtu)	8,987,541	10,032,202	7,674,203	7,181,869
Whole Building	(\$)	254,217	268,924	209,110	196,884
Energy Cost	(\$/ft²)	1.90	2.01	1.57	1.47
IIVAC En anov.	Electricity(kWh)	1,543,244	1,720,951	1,111,217	1,014,054
HVAC Energy	Gas(therms)	0	4,383	1,608	0
Usage	Total(kBtu)	5,265,767	6,310,429	3,952,430	3,460,096
HVAC Energy	(\$)	142,946	157,653	97,839	85,613
Cost(\$/ft²)	(\$/ft²)	1.07	1.18	0.73	0.64

Phoenix Results

Energy consumption by end use for the Phoenix location (climate zone 2B) was as follows:

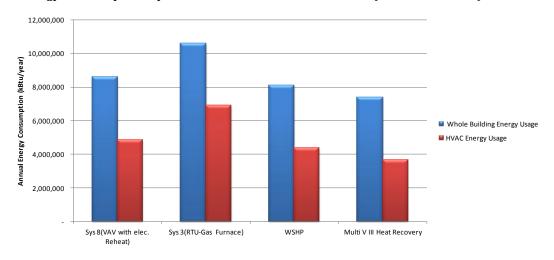


Figure 8: Phoenix Annual Energy Consumption Comparisons.

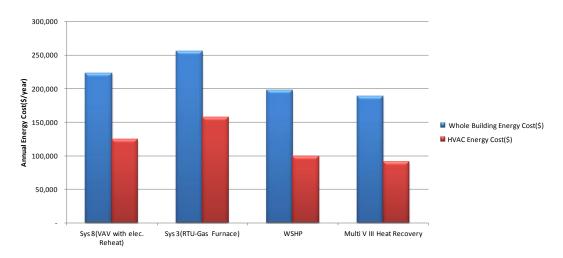


Figure 9: Phoenix Annual Building Energy Cost Comparisons.

The following tables summarize the energy usage and cost savings for the different cases. The whole building energy cost savings over the baseline (Sys 8, VAV with elec. Reheat) for the Multi V III Heat Recovery VRF systems was 15%.

Table 10: Phoenix Annual Energy Consumption by End Use

		ASHF	Proposed		
			Sys 3 (RTU-Gas Furnace)	WSHP	Multi-V III Heat Recovery
Area Lights	kWh	350,047	350,047	350,047	350,047
Equipment	kWh	663,385	663,385	663,385	663,385
Hot Water	therms	2,638	2,638	2,638	2,638
Space Cooling	kWh	471,637	573,059	349,147	304,832
Space	kWh	77,758	=	9,849	64,486
Heating	therms	-	8,334	2,898	-
Fans	kWh	853,809	1,202,129	809,521	700,442
Pumps	kWh	23,062	265	33,515	437
Totals	kBtu	8,588,395	10,613,271	8,113,077	7,373,437

Table 11: Phoenix Estimated Annual Energy Use and Cost

		ASHRAE Standard 90.1-2007			Proposed
		Sys 8 (VAV	Sys 3 (RTU-		Multi-V III
		with elec.	Gas	WSHP	Heat
		Reheat)	Furnace)		Recovery
Whole Building	Electricity (kWh)	1,426,266	1,775,453	1,202,032	1,070,197
Energy	Gas (therms)	2,638	10,972	5,536	2,638
Consumption	Total(kBtu)	8,588,395	10,613,271	8,113,077	7,373,437
Whole Building Energy Cost	(\$)	222,822	255,883	197,387	188,501
	(\$/ft²)	1.67	1.92	1.48	1.41
	Electricity (kWh)	1,426,266	1,775,453	1,202,032	1,070,197
HVAC Energy Usage	Gas (therms)	-	8,334	2,898	-
	Total (kBtu)	4,866,622	6,891,497	4,172,450	3,674,999
HVAC Energy Cost(\$/ft²)	(\$)	124,592	157,653	99,157	90,271
	(\$/ft²)	0.93	1.18	0.74	0.68

Atlanta Results

Energy consumption by end use for the Atlanta location (climate zone 3A) was as follows:

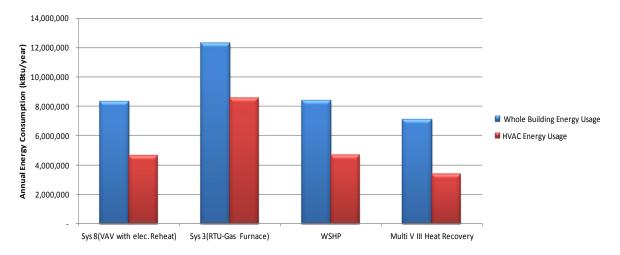


Figure 10: Annual Energy Consumption Comparisons.

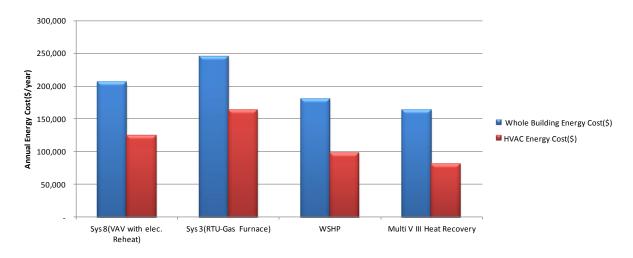


Figure 11: Atlanta Annual Building Energy Cost Comparisons.

The following tables summarize the energy usage and cost savings for the different cases. The whole building energy cost savings over the baseline (Sys 8, VAV with elec. Reheat) for the Multi V III Heat Recovery VRF systems was 21%.

Table 12: Atlanta Annual Energy Consumption by End Use

		ASHR	AE Standard 90.1-	2007	Proposed
		Sys 8 (VAV with elec. Reheat)	V with elec. (RTU-Gas		Multi-V III Heat Recovery
Area Lights	kWh	350,047	350,047	350,047	350,047
Equipment	kWh	663,385	663,385	663,385	663,385
Hot Water	therms	2,638	2,638	2,638	2,638
Space Cooling	kWh	321,124	332,061	216,859	189,857
Space	kWh	243,350	-	39,435	52,379
Heating	therms	-	32,332	11,054	-
Fans	kWh	774,869	1,228,191	772,301	743,232
Pumps	kWh	14,558	-	15,396	-
Totals	kBtu	8,341,476	12,278,775	8,389,419	7,084,330

Table 13: Atlanta Estimated Annual Energy Use and Cost

		ASHRA	ASHRAE Standard 90.1-2007		
		Sys 8 (VAV with elec. Reheat)	Sys 3 (RTU- Gas Furnace)	WSHP	Multi-V III Heat Recovery
Whole Building	Electricity (kWh)	2,367,333	2,573,684	2,057,423	1,998,900
Energy	Gas (therms)	2,638	34,970	13,692	2,638
Consumption	Total(kBtu)	8,341,476	12,278,775	8,389,419	7,084,330
Whole Building	(\$)	206,088	244,851	179,675	162,589
Energy Cost	(\$/ft²)	1.54	1.83	1.34	1.22
	Electricity (kWh)	1,353,901	1,560,252	1,043,991	985,468
HVAC Energy Usage	Gas (therms)	-	32,332	11,054	-
2.280	Total (kBtu)	4,619,702	8,557,001	4,667,645	3,362,556
HVAC Energy	(\$)	123,905	162,668	97,492	80,406
Cost(\$/ft²)	(\$/ft²)	0.93	1.22	0.73	0.60

New York Results

Energy consumption by end use for the New York location (climate zone 4A) was as follows:

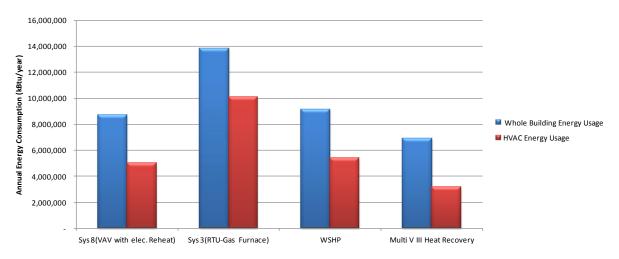


Figure 12: New York Annual Energy Consumption Comparisons.

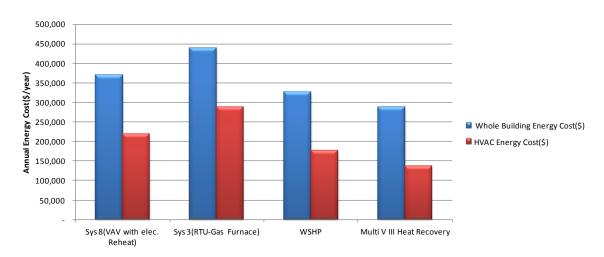


Figure 13: New York Annual Building Energy Cost Comparisons.

The following tables summarize the energy usage and cost savings for the different cases. The whole building energy cost savings over the baseline (Sys 8, VAV with elec. Reheat) for the Multi V III Heat Recovery VRF systems was 22%.

Table 14: New York Annual Energy Consumption by End Use

		ASHF	2007	Proposed	
		Sys 8 (VAV with elec. Reheat)	Sys 3 (RTU-Gas Furnace)	WSHP	Multi-V III Heat Recovery
Area Lights	kWh	350,047	350,047	350,047	350,047
Equipment	kWh	663,385	663,385	663,385	663,385
Hot Water	therms	2,638	2,638	2,638	2,638
Space Cooling	kWh	307,506	233,656	216,141	155,539
Space	kWh	355,466	-	68,036	85,611
Heating	therms	-	45,833	18,265	-
Fans	kWh	784,226	1,382,056	754,439	682,695
Pumps	kWh	14,892	735	14,934	1,490
Totals	kBtu	8,710,632	13,820,620	9,143,136	6,879,148

Table 15: New York Estimated Annual Energy Use and Cost

		ASHRAE Standard 90.1-2007			Proposed
		Sys 8 (VAV with elec. Reheat)	Sys 3 (RTU- Gas Furnace)	WSHP	Multi-V III Heat Recovery
Whole Building	Electricity (kWh)	2,475,522	2,629,879	2,066,982	1,938,767
Energy Consumption	Gas (therms)	2,638	48,471	20,903	2,638
	Total(kBtu)	8,710,632	13,820,620	9,143,136	6,879,148
Whole Building	(\$)	368,857	437,401	326,518	286,787
Energy Cost	(\$/ft²)	2.76	3.27	2.44	2.15
	Electricity (kWh)	1,462,090	1,616,447	1,053,550	925,335
HVAC Energy Usage	Gas (therms)	-	45,833	18,265	-
22.80	Total (kBtu)	4,988,858	10,098,847	5,421,362	3,157,374
HVAC Energy	(\$)	200,041	268,585	157,702	128,767
Cost(\$/ft²)	(\$/ft²)	1.63	1.73	1.15	0.96

Chicago Results

Energy consumption by end use for the Chicago location (climate zone 5A) was as follows:

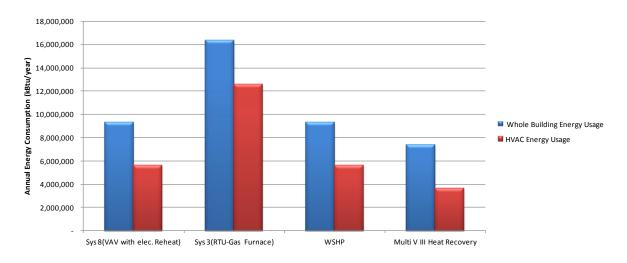


Figure 14: Chicago Annual Energy Consumption Comparisons.

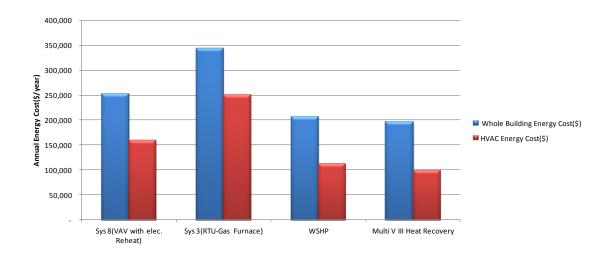


Figure 15: Chicago Annual Building Energy Cost Comparisons.

The following tables summarize the energy usage and cost savings for the different cases. The whole building energy cost savings over the baseline (Sys 8, VAV with elec. Reheat) for the Multi V III Heat Recovery VRF systems was 22%.

Table 16: Chicago Annual Energy Consumption by End Use

		ASHF	ASHRAE Standard 90.1-2007				
		Sys 8 (VAV with elec. Reheat)	Sys 3 (RTU-Gas Furnace)	WSHP	Multi-V III Heat Recovery		
Area Lights	kWh	350,047	350,047	350,047	350,047		
Equipment	kWh	663,385	663,385	663,385	663,385		
Hot Water	therms	2,638	2,638	2,638	2,638		
Space Cooling	kWh	215,346	216,878	155,835	127,322		
Space	kWh	588,480	=	114,861	234,584		
Heating	therms	-	56,029	20,190	-		
Fans	kWh	828,069	1,833,552	768,064	696,286		
Pumps	kWh	7,694	-	8,153	1,959		
Totals	kBtu	9,316,283	16,327,092	9,312,989	7,339,159		

Table 17: Chicago Estimated Annual Energy Use and Cost

		ASHR	AE Standard 90.1	-2007	Proposed
		Sys 8 (VAV with elec. Reheat)	Sys 3 (RTU- Gas Furnace)	WSHP	Multi-V III Heat Recovery
Whole Building	Electricity (kWh)	2,653,021	3,065,638	2,060,345	2,073,583
Energy Consumption	Gas (therms)	2,638	58,667	22,828	2,638
	Total(kBtu)	9,316,283	16,327,092	9,312,989	7,339,159
Whole Building	(\$)	251,926	343,420	205,967	196,626
Energy Cost	(\$/ft²)	1.89	2.57	1.54	1.47
	Electricity (kWh)	1,639,589	2,050,430	1,046,913	1,060,151
HVAC Energy Usage	Gas (therms)	•	56,029	20,190	-
	Total (kBtu)	5,594,510	12,599,258	5,591,216	3,617,385
HVAC Energy	(\$)	153,915	245,409	107,956	98,615
Cost(\$/ft²)	(\$/ft²)	1.15	1.84	0.81	0.74

LEED for New Construction & Major Renovations

The LEED (Leadership in Energy and Environmental Design) 2009 Green Building Rating Systems are voluntary, consensus-based, and market-driven. Based on proven technology, they evaluate environmental performance from a whole building perspective over a building's life cycle, providing a standard for what constitutes a green building in design, construction, and operation. The LEED rating system provides a complete framework for assessing building performance and meeting sustainability goals. Based on a system of prerequisites and credits, referring to ASHRAE standards, LEED projects earn points during the certification process, and then are awarded certification levels.

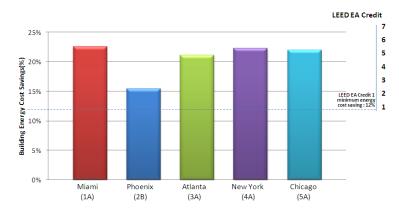


Figure 16 LG Multi-V III Heat Recovery VRF Building Energy Cost Savings (%) and Potential LEED Points

* EA Credit 1: Optimize Energy Performance (1–19 points)

Percentage energy cost saving in the proposed building performance rating compared with the baseline building performance rating. The baseline building performance according to ASHRAE Standard 90.1-2007 is calculated using a simulation model for the whole building project. The minimum energy cost savings percentage for each point threshold is as follows:

New Buildings	Existing Building	Renovations Points
12%	8%	1
14%	10%	2
16%	12%	3
18%	14%	4
20%	16%	5
22%	18%	6
24%	20%	7
26%	22%	8
28%	24%	9
30%	26%	10
32%	28%	11
34%	30%	12
36%	32%	13
38%	34%	14
40%	36%	15
42%	38%	16
44%	40%	17
46%	42%	18
48%	44%	19

The Multi V III VRF air conditioning system is engineered for sustainable green building and provides opportunities for designers to claim many LEED prerequisites and credit points. Below are LG Electronics' recommendations and strategies to earn points towards LEED for New Construction certification using Multi V VRF systems.

Table 18 LG Electronics' recommendations and strategies towards LEED certification

Section Title	Credit	Intent of Credit	Points	LG Electronics' Recommendations
	Prereq 2	Minimum Energy Performance	Required	All LG Electronics' products meet/exceed
	Prereq 3	Fundamental Refrigerant Management	Required	 ASHRAE Standard 90.1-2007. All LG Electronics' products use environmentally friendly refrigerant R410A.
EA(Energ y and Atmosph ere)	Credit 1	Optimize Energy Performance	1 to 19	 Multi V offers exceptional energy performance by using state of the art controls, high efficiency variable speed fan assemblies, and a combination of variable and constant speed compressors. Select heat recovery equipment options.
C	Credit 4	Enhanced Refrigerant Management	2	Use Multi V heat recovery systems and eco V (Heat Recovery Ventilator).
	Prereq 1	Minimum IAQ Performance	Required	The modular design of Multi V uses multiple
IEQ(Indo	Prereq 3	Minimum Acoustical Performance	Required	indoor units, allowing the designer to provide individualized control for each occupant.LG's building management controllers and
mental Quality) Cro	Credit 1	Outdoor Air Delivery Monitoring	1	communication gateways make it easy to monitor energy usage and control the Multi V system operations based on building usage or
	Credit 2	Increased Ventilation	1	indoor air quality. • All LG Electronics' products have tested sound
	Credit 3.2	Construction Indoor Air Quality Management Plan	1	data in accordance with standards. • Use eco V (Heat Recovery Ventilator).

References

ANSI/ASHRAE/IESNA Standard 90.1-2007

- TABLE 5.5-1 Building Envelope Requirements for Climate Zone $1\sim5$.
- Table 6.8.1A: Electronically Operated Unitary Air Conditioners and Condensing Units—Minimum Efficiency Requirements
- TABLE 6.8.1B Electrically Operated Unitary and Applied Heat Pumps—Minimum Efficiency Requirements
- TABLE 6.8.1C Water Chilling Packages-Minimum Efficiency Requirements
- Table 6.8.1E: Warm Air Furnaces and Combination Warm Air Furnaces/Air-Conditioning Units, Warm Air Duct Furnaces and Unit Heaters.
- TABLE 6.8.1G Performance Requirements for Heat Rejection Equipment
- Table 7.8: Performance Requirements for Water Heating Equipment.
- Table 9.5.1: Lighting Power Densities Using the Building Area Method.

Electricity Rates

- EPA EnergyStar(Portfolio Manager Overview), www.energystar.gov, http://www.eia.gov/electricity/data.cfm, http://www.eia.gov/energyexplained/index.cfm?page=natural_gas_prices
- Miami: FLORIDA POWER & LIGHT COMPANY, General Service Demand Time of Use GSDT-1, www.fpl.com/rates/pdf/electric_tariff_section8.pdf
- Phoenix: ARIZONA PUBLIC SERVICE COMPANY, E-32 Large Plan, www.aps.com/main/services/business/rates/BusRatePlans_19.html
- Atlanta: Georgia Power -TOU-GSD-5 >500kW Primary, www.georgiapower.com/pricing/business/medium-business.asp
- New York: NY-ConEd- Rate II General Large, http://www.coned.com/rates/
- Chicago: ComED-Non-Residential, www.comed.com/sites/customerservice/Pages/RateInformation.aspx

Natural Gas Rates

- Miami: Peoples Gas, General Service, GS-2, www.peoplesgas.com/data/files/tariff/TariffSect7.pdf
- Phoenix: Southwest Gas, G-25 General Gas Service, www.swgas.com/tariffs/aztariff/schedules/g25.pdf
- Atlanta: Georgia Natural Gas -Standard Plan, www.gasgeorgia.com/fixed.html
- New York: NY Coned-Rate II General Heating, www.coned.com/rates/
- Chicago: People Gas Rate-2, www.peoplesgasdelivery.com/business/gas_rates.aspx

Background and General Information

- NREL, Strategies for 50% Energy Savings in Large Office Buildings, 2009.
 www.nrel.gov/docs/fy10osti/49213.pdf.
- U.S. Green Building Council, LEED® for New Construction & Major Renovations TM